Search for a High Mass Electron-Muon Resonance in the ATLAS Detector at the LHC

Scott Aefsky

Brandeis University

Outline

- LHC
- Detector
 - ATLAS summary
 - Muon Spectrometer
 - Alignment of the ATLAS MS
- Analysis
 - Theory/Motivation
 - Dataset
 - Event Selection
 - Backgrounds
 - Results

ATLAS

ATLAS Muon Spectrometer

Muon Spectrometer B-Field

MS Resolution

MS Alignment

- Endcap and Barrel treated as separate subdetectors
- 2 general options to align detector
 - Relative Alignment
 - Precise initial alignment
 - Sensors monitor changes from initial
 - Absolute Alignment
 - Sensors used to calculate absolute chamber positions
- For various reasons, endcap chose absolute, barrel chose relative

MS Endcap Alignment

TRUTH

MS Alignment Software

December 2011

Alignment Validation - Strategy

- Use straight tracks to check alignment
 - Sagitta distribution centered at 0
 - Width dominated by multiple scattering
- Early 2011, ATLAS took ~5 pb^-1 of toroid off data
 - Millions of high momentum (p>25 GeV) muons
- Ancillary benefit
 - Possible to find non-alignment errors in MS

Alignment Validation - Results 12

Alignment Summary

- Alignment of the MS key to good momentum measurement
- Software running the sensors very reliable
 - Errors get flagged in ATLAS control room
- Validation using straight tracks
 - Near the desired 40 micron level
 - Several non-alignment issues discovered
 - Cabling errors
 - Incorrect chamber geometry
 - » Spacer Height
 - » Tube configuration
- Future: Using tracks to improve alignment

e-mu Resonance Motivation

- Lepton flavor conserved in SM
 - Result of accidental symmetry
 - To be renormalizable, operators must have mass dim<5
 - Processes with LFV have mass dimension >=5
- Non-renormalizable terms allowed if SM is weak scale approximation of higher energy model
 - Several theories allow for LFV (RPV SUSY, LRSM, etc)
- Neutrino oscillations confirm LFV
- Charged LFV would require new physics
 - Most searches for cLFV look for rare decays
 - mu->eee, mu->eγ, etc
 - Impossible at LHC
 - e-mu resonance most visible signature

Benchmark Model

- Want to perform model independent search
 - Need basic model for signal simulation, limit setting
- Add LFV coupling to SSM Z', Q_{12}^ℓ
 - Not theoretically favored, but works as benchmark
 - Z'-e-mu coupling
 - Model would contribute to mu-> eee branching ratio
 - Set Z'-e-e coupling to zero to remove constraints

$$\sigma(q\bar{q}\to Z'\to l_i^- l_j^+) = \frac{g_z^2}{4\pi} \frac{(Q_{ij}^l)^2}{144} \frac{M^2}{(M^2-M_{Z'}^2)^2+M_{Z'}^2\Gamma_{Z'}^2}$$

Datasets/Triggers

- Analysis performed separately on 2010 and 2011 data
 - 2010 analysis: 35 pb^-1, PRL **106**, 251801 (2011)
 - 2011 analysis: 1 fb^-1, through July 2011
 - Accepted for publication in EPJC
- Signal events should pass both e and mu triggers
 - Requiring OR gives ~100% trigger efficiency
- Data separated by trigger stream

Need to use both streams

Backgrounds

- - WW, ZZ, WZ \bullet $q\bar{q} \to g \to t\bar{t} \to W^+W^-b\bar{b} \to e\mu jj$

•
$$gb \rightarrow b \rightarrow tW^- \rightarrow W^+be^-\bar{\nu}_e \rightarrow \mu^+\nu_\mu je^-\bar{\nu}_e$$

- Instrumental backgrounds
 - QCD production, W/Z+jets, W/Z+y
 - Jets can contain electrons or muons
 - Jets can be incorrectly reconstructed as electrons
 - Photons can be incorrectly reconstructed as electrons
 - Most of these events have one prompt lepton and one non-prompt
 - » Some contribution from events with two nonprompt leptons

Object Selection

- Searching for high-mass events, but need to confirm data-MC agreement at low-mass (high-background)
 - pT thresholds determined by trigger
- Electron
 - pT > 25 GeV
 - Track matched to calorimeter cluster
 - Shower shape requirements
 - Isolated (ET_cone < 10 GeV)
- Muon
 - pt > 25 GeV
 - Track in both MS and ID
 - ID track hits in all subdetectors
 - Isolated (pT_cone <10GeV)

Event Selection

- Require exactly 1 e 1 mu passing object selection
 - Opposite charge
- Event must pass trigger
- All relevant parts of the detector in working order
 - Some bad regions of calorimeter
 - Electron in such a region vetoed event
 - Calorimeter bursts vetoed event

Instrumental Background

- Estimated from data using "matrix method"
 - Loosen selection to get larger sample
 - Remove isolation requirements
 - Every event assigned a weight containing:
 - » Probability it would survive full selection
 - » 1-(Probability it contains two prompt leptons)
 - Background built from these weights
- Measure efficiencies from "clean" samples of prompt (Z decays) and non-prompt (dijet) leptons

$$\begin{bmatrix} N_{TT} \\ N_{T\bar{T}} \\ N_{\bar{T}T} \\ N_{\bar{T}T} \end{bmatrix} = \begin{bmatrix} \epsilon_e \epsilon_\mu & \epsilon_e f_\mu & f_e \epsilon_\mu & f_e f_\mu \\ \epsilon_e (1 - \epsilon_\mu) & \epsilon_e (1 - f_\mu) & f_e (1 - \epsilon_\mu) \\ (1 - \epsilon_e) \epsilon_\mu & (1 - \epsilon_e) f_\mu & (1 - f_e) \epsilon_\mu & (1 - f_e) f_\mu \\ (1 - \epsilon_e) (1 - \epsilon_\mu) & (1 - \epsilon_e) (1 - f_\mu) & (1 - f_e) (1 - \epsilon_\mu) \end{bmatrix} \begin{bmatrix} N_{PP} \\ N_{\bar{P}P} \\ N_{\bar{P}P} \end{bmatrix}$$

Background Summary

Process	Number of Events (2011)
$Z/\gamma^* o au au$	751±62
$t ar{t}$	1578 ± 173
WW	380 ± 31
Single top	154 ± 16
WZ	22.4 ± 2.3
ZZ	$2.48 {\pm} 0.26$
$W/Z + \gamma$	82 ± 13
Instrumental background	1175 ± 124
Total background	4145±248

Signal Simulation

- Signal process does not exist in standard generators
 - Modified Pythia Z' ->ee and Z'-> mu mu
 - Changed flavor of one of outgoing particles
 - Gives both charge states (e⁺mu⁻ and e⁻mu⁺)
 - Branching ratio set to equal Z'-> mu mu branching ratio
- CDF set limits on similar models up to ~750 GeV (2006)
 - Later CDF/D0 results can be interpreted for this model
 - New interpretation gives limits up to ~900 GeV
- Chose to generate samples starting at 700 GeV

Signal Excpectation

Broad mass windows defined for each mass point

$Mass (GeV/c^2)$	Min. $M_{e\mu}(\text{GeV/c}^2)$	Max. $M_{e\mu}(\text{GeV/c}^2)$	Exp. Background
700	550	850	2.8 ± 1.7
800	600	1000	2.3 ± 1.5
900	700	1100	1.2 ± 1.1
1000	750	1250	0.6 ± 0.8
1500	1100	1800	0.04 ± 0.19
2000	1600	2400	0±0

Cross-sections and expected yields

Mass (GeV)	$\sigma \times BR$ (fb) LO*	Efficiency	Exp Events
700	551	0.594	327
800	315	0.610	192
900	186	0.610	113
1000	102	0.614	63
1500	10.6	0.610	6.5
2000	1.54	0.592	0.9

Results

Limit Setting

- Use Bayesian method to set 95% CL limits on cross section times branching ratio
 - Cross section proportional to $\left(Q_{12}^\ell\right)^2$
 - · Limits can be set on coupling, as well
- Efficiency, luminosity, and background treated as uncorrelated nuisance parameters
 - Systematics:

Source	Fractional uncertainty $(\%)$
2010 (2011) Luminosity	$11\% \ (3.7\%)$
Trigger efficiency	1%
Electron reco and ID efficiency	2%
Muon reco and ID efficiency	0.9%
Instrumental Background (2011)	10.6%
$Z/\gamma^* \to \tau\tau$ cross section	5%
ZZ cross section	5%
WW cross section	7%
WZ cross section	7%
$t\bar{t}$ cross section	10%
Wt cross section	9%
$W\gamma$ cross section	10%
$Z\gamma$ cross section	10%

Cross Section Limits

Coupling Limits

Summary

- Performed a search for high mass e-mu resonance
 - No excess observed
 - Limits set on production cross-section times branching ratio for "generic" vector particle decaying to e mu
 - Limits set on coupling for a benchmark model
- Limits set go beyond those presented by CDF
 - Higher mass range
 - Reinterpretation of later Tevatron results also do not reach same mass range
- Acknowledgements:
 - e-mu analysis team: D Pomeroy (Brandeis), D Zhang (Academica Sinica), J Zhu (U Michigan)
 - ATLAS collaboration
 - Advisor: Craig Blocker

